=y_

®

Merchant Web Application Integration
Quick Start Guide

Payeezy ACH API

Version 2.0 Page 1 of 25



Contents

NY=Ted o] o T R oY Ao Yo [V o1 4o o I P O USSP SRR PPPRPP 3
Section 2: GENEral WOTrKFIOW ... ..coiuiii ettt st st e st e e s b e e sbe e e sabeeesabeeas 4
Section 3: Integration Details - Web APPlICAtION .....uveiiiiiiii it e e e e e e e e e e e e e annes 5
Section 4: Validation Call Type Example - PayWithMyBanK...........ceeeeiiiiiiiiiiiiiiiiiiieee e e e e 7
1. Method 1: An example Spring Boot / JSP Web Application.........ccccouueieeeciiiiiieciiiee e, 7
2. Major components of sample Spring Boot / JSP web application ..........ccccocevieieiiiiieiicccieeceeeen, 16
3. Building and deployment of the application ... 17
4. Validation Call Methods for PayWithMyBanK. ..........ceeeiiiiiiiiiiiiiiiiiieeece et e e e ee e 18
o8] o1 1= Vo To] £ 1oV - UURR 19
1. Compatibility With INtErNet EXPIOTEr 8 ....ceeiei ittt e e e e e e e e e e e ar e aeaeeeas 19
2. Mismatched URL Hash Validation.........coiiiiiiiiiiiiee ettt et 19
T V1Yol o F=Y ol = o T=T o [ V- U UUSPPR 20
Y o] 01T e [ U PSURRP 21
1.  PayWithMyBank REtUIN StAatus ValUES ......ccciiiiiiciiiiiiieieee ettt e ettt e e e e e e e e e e e aanranaeeeas 21
2. PayWithMyBank Transaction TeSt PASSWOITS ......cceiieiiieiiiiiiiiiieeeeeeeeeececiirrre e e e e e e e e e e e saanenraeeeeeaaeeeeeas 22
[ =AVA ] (o] T o 15 Mo | VAP PPPPPRRR 25

Version 2.0 Page 2 of 25



Section 1: Introduction

This Quick Start Integration guide provides an overview of the steps required to integrate a Merchant

Web Application (that can handle a JavaScript call) with Payeezy ACH API (Application Program
Interface).

The Payeezy ACH API provides the controls and functions needed to validate the Merchant in the
TeleCheck system, retrieve the information needed to establish the call to the various Account
Validation Partners, and retrieve the requested information from the Account Provider Partner for the

Merchant’s Web Application. Payeezy ACH API will track the validation request in an internal
database.

For this release, we have PayWithMyBank as the available Account Validation Partner (AVP) for this
service. A sample web application utilizing PayWithMyBank is available for download here:
http://github.com/payeezy

The Account Validation Partner requested is specified through the “Validation Call Type” sent to
Payeezy ACH API.

Validation Call Type Account Provider Partner Call Type Methods

Pwmb Pay With My Bank pwmb.getAll
pwmb.getConsumerinfo
pwmb.getBankinfo

<FutureProviderPartners> <FutureProviderPartners> <FutureProviderPartners>

To use the Payeezy ACH APl within the Merchant Web Application, the following is required:

1) The Merchant Web Application must be able to support javascript.

2) Network Firewalls must be configured to connect to the Payeezy URL.

3) Network Firewalls must be configured to connect to the Account Validation Partner URL.

4) Must obtain the “apikey”, “token”, and “apisecret” from Payeezy to be able to execute any API calls
from the Payeezy URL. (Development/Testing values are provided as part of the git project)

Version 2.0 Page 3 of 25



Section 2: General Workflow

The diagram below depicts the general workflow interactions between each component required to use
the Payeezy ACH API in the Merchant Web Application.

The diagram references PayWithMyBank as the Account Validation Partner for this example.

(Step 9) Call to MIE
(Merchant Initiated

Enroliment) to enroll (Step 4) The “Establish” information is sent to the Account Validation

Consumer in Partner (PayWithMyBank in this example) by the TCKValidationService
ConnectPay. JavaScript call. The “Establish” connection is done.
Merchant Web App > Account Validation Partner
(With JavaScript Support) - (Example: PayWithMyBank)
(Step 5) NOTE: What happens in this step varies by Account Validation
I Partner. In this specific example, PayWithMyBank sends back a
l— “Shadow Box”, prompting for a username/password, then the bank is
selected, then the account is selected. The transaction information is A
D sent back via URL parameters, which is then sent to the
TCKValidationService on the “onload”. This is done by the
TCKValidationService JavaScript. (Step 7a) Request Name, Address,
Form View Object Bank information for the
Transaction ID. (Note: this is
N i specific for PayWithMyBank, the
information retrieved depends on
(Step 1) TCKValidationService JavaScript the Account Validation partner).
call to request validation by Validation TCKValidationService
Call Type (Example: pwmb) -
» . )
.(Step 2) Yalidate Subscriber and Retrieve “Establish” g:‘.—etzZ!I)_?'g\lnasr::t,iC)A::igeisssé:;?:elsfg;matlon
|nformat|o|t|: o TCKValidationService. (Note: this is specific
(Step 3) TCKValidationService sends the " Subscnber Validation, Product, A‘?d'of‘- for PayWithMyBank, the information
“Establish” JSON string back via the Merchant " Retrieve PWMB_MERCHANT_ID (in this example retrieved depends on the Account
Web Page. for PayWithMyBank). Validation partner).

= Creates an “Establish” JSON string. /\
= Insert preliminary transaction information to
internal database. U

(Step 6) In the “onload” of the Merchant Web Page

refresh, the transaction information retrieved from the (Step 7) Make call to the Account Validation Partner . - Inserts preliminary> Transaction
Accoun.t Vallldatlor? partn?r }5 sent to the to retrieve information for the transaction. transaction Database
TCKValidationService. This is done by the = In the case of PayWithMyBank, get the Name, information Tables
TCKValidationService JavaScript. Address, and Bank Information (depending on the | _ R X .
y N ; . Retrieves transaction
- Subscriber settings) using the Transaction ID

Information for

retrieved from the Form Object. Undate (Internal to

(Step 8) TCKValidationService sends the JSON string to the ° Ui e e fismeitern it irisme) |- Uzdate; transaction TeleCheck)

Web App, which in turn populates the Form View Object daFabase. . with the detail

with the information from the JSON string. = BuildaJSON string to be used by the Web retrieved. \‘/
Application to display the information.

Figure 2.1: General Workflow Diagram of Merchant web app.

Version 2.0 Page 4 of 25



Section 3: Integration Details - Web Application

The Merchant Web Application needs to include the following:

1) The following java packages located in the git project referenced above. (Detailed contents described on pg. 16)
com.firstdata.ach.pwmb.web.client
com.firstdata.ach.pwmb.web.client.payload
com.firstdata.ach.pwmb.web.client.util

2) The application.properties file, located in the git project. (Detailed contents described on pg. 17)

3) The JavaScript for the interface (hosted locally), located in the git project:

<script type="text/javascript"
src="https://<MerchantDomainHere>/TCKValidationinterface.js"></script>

Figure 3.1: Inclusion of TCKValidationinterface JavaScript inside of a Merchant Web Application.

4) The JavaScript and Cascading Style Sheet for the Account Validation Partner must be included in the
Merchant Web Application (For PayWithMyBank, these are hosted remotely on PayWithMyBank’s
server).

This is an example for using PayWithMyBank as the Account Validation Partner:
(Note that the values below are for development/testing purposes. Production values will be provided upon
Merchant boarding)

<link href="https://sandbox.paywithmybank.com/start/styles/pwmb.css' rel='stylesheet'
type="text/css'>

<script type="text/javascript"
src="https://sandbox.paywithmybank.com/start/scripts/pwmb/pwmb.js?accessld=RqBNyqzgT
VGhmvyV74NM"></script>

Figure 3.2: Inclusion of JavaScript and Cascading Style Sheet from an Account Validation Partner (PayWithMyBank).

5) A call to Payeezy ACH Establish API via the TCKValidationInterface JavaScript must be added to the
Merchant Web Application to initiate the “Establish” request, Subscriber Validation, establish
connection to the Account Validation Partner, information retrieval, and display.

This is all done in one call to TCKValidationService Javascript.

This example (included in the git project) shows the call to TCKValidationService by clicking on a
button on the screen:

Version 2.0 Page 5 of 25



<button name="pwmb" onclick="javascript:TCKValidationService('pwmb.getAll')">Enroll using
PWMB</button><br><br>

Figure 3.3: Form Button to initiate “Establish”call to TCKValidationService.

This table shows the parameters for the call to TCKValidationService (in this example we are using
PayWithMyBank as the Validation Call Type):

Parameter | Parameter Option(s) / Value(s) Description
Number Name
P1 Validation Call | pwmb.getAll This tells TckValidationService which
Type Options | pwmb.getConsumerinfo | Account Validation Partner (AVP) will
pwmb.getBankinfo be used for the request, and the type of
information that will be requested from
the AVP.

6) A Form View to retrieve and contain the information retrieved from the Account Validation Partner.

Fields are populated automatically by naming the fields with the exact field object name as provided
for the Validation Call Type. The following is an example for PayWithMyBank:

<!-- Field Extraction Method: name fields exactly as below, fields will be populated
automatically -->

<tr><td>Bank RTN:</td><td><input type="text' id="bank_routing' /></td></tr>
<tr><td>Bank Account:</td><td><input type="text' id='bank_acct' /></td></tr>
<tr><td>Transaction ID:</td><td><input type="text' id='transactionID' /></td></tr>
<tr><td>Customer Name:</td><td><input type="text' id='username' /></td></tr>
<tr><td>Address:</td><td><input type="text' id='address' /></td></tr>
<tr><td>Address2:</td><td><input type="text' id="address2' /></td></tr>
<tr><td>City:</td><td><input type="text' id="city' /></td></tr>
<tr><td>State:</td><td><input type='text' id='state' /></td></tr>
<tr><td>Zip:</td><td><input type="text' id="zip' /></td></tr>
<tr><td>Phone:</td><td><input type="text' id='phone’' /></td></tr>
<tr><td>Email:</td><td><input type="text' id='email' /></td></tr>

Figure 3.4: Sample code for Web Form Objects which will be populated automatically by TCKValidationService after transaction
information is retrieved from Account Validation Partner (PayWithMyBank).

In the above example, by naming the field “bank_routing”, the call to TckValidationService will
look for a form object called “bank_routing” and automatically fill it with the Bank Routing
retrieved from PayWithMyBank, and also look for a form object called “bank_acct” and
automatically fill it with the Bank Account retrieved from PayWithMyBank, etc.

Version 2.0 Page 6 of 25



Section 4: Validation Call Type Example - PayWithMyBank

This section is a specific example showing integration with PayWithMyBank as the Account Validation
Partner.

The example in this section was tested in the following configurations:

Configuration | Configuration Details
Number
1 Java Version: 1.8

Servlet API Version: 3

Application Server: Cloud Foundry

2 Java Version: 1.8.0_73

Servlet API Version: 2.5

Application Server: Apache Tomcat 6.0.45

1. Method 1: An example Spring Boot / JSP Web Application

This is an example with a Spring Boot /JSP web page accessing TckValidationService.
(http://github.com/payeezy)

* Code Structure:
<Web Application Root>/

pwmb merchant.jsp
transactions.jsp

* File Descriptions:

=  pwmb_merchant.jsp: The Web Application Form Page; includes the references to PayWithMyBank

sandbox JavaScript and Cascading Style Sheet, TckValidationInterface JavaScript for accessing

TckValidationService, and the Form Objects to display the values of the information retrieved from

PayWithMyBank.
= Transactions.jsp: Displays the output of transaction call.

A. Create a sample Merchant Web Application in JSP containing:

* Interface to TckValidationService JavaScript.
* Interface to Payeezy ACH API calls.

* Callto TckValidationService to validate subscriber, establish connection to PayWithMyBank, and
retrieve the selected Account Information.

* Display the Account Information in a Form View Object.

The following are highlights of the file: pwmb_merchant.jsp.

Version 2.0 Page 7 of 25



i Interface to TckValidationService (via the TckValidationInterface JavaScript).

This code shows the inclusion of the TckValidationInterface JavaScript containing the method(s)
to access the TckValidationService API. Note that “name” attribute would be passed from App
Controller (more details below in Section B).

<script type="text/javascript"
src="<%= request.getAttribute ("name")$%>/TCKValidationInterface.js">
</script>

Figure 4.1: Section of code in “pmwb_merchant.jsp” showing inclusion of the TckValidationinterface Javascript.
ii. Interface to PayWithMyBank sandbox.

This code shows the inclusion of PayWithMyBank’s cascading style sheet and the inclusion of
PWMB'’s JavaScript to run their “Shadow box”:

<link href='https://sandbox.paywithmybank.com/start/styles/pwmb.css'
rel='stylesheet' type='text/css'>
<script type="text/javascript"
src="https://sandbox.paywithmybank.com/start/scripts/pwmb/pwmb. js?accessId=RgBNyqzgTVGhmvy
V74NM" >
</script>

Figure 4.2: Section of code in “pmwb_merchant.jsp” showing of PayWithMyBank Javascript and CSS.

iii. Call to TckValidationService to validate subscriber, establish connection to PayWithMyBank, and
retrieve the selected Account Information.

In this section of code, a button is clicked to initiate the call to TckValidationService. The
available methods for the PWMB Validation Call Type are: pwmb.getAll, pwmb.getConsumerinfo,
pwmb.getBankinfo.

<!-- Pl options: pwmb.getAll, pwmb.getConsumerInfo, pwmb.getBankInfo -->
<button name="pwmb" onclick="javascript:TCKValidationService ('pwmb.getAll')">Enroll using
PWMB</button><br><br>

Figure 4.3: Section of code in “pmwb_merchant.jsp” showing button to initiate call to TckValidationService.

Once the account information from PayWithWithBank is retrieved, the information can be
displayed in a Form Object in the Web Application. Below is the method for displaying the
information.

iv. Automatically display the Account Information in a Form View Object.
This method requires that the Form Objects are named specifically as shown.

TCKValidationService will automatically fill the values of these Form Objects once the data is
retrieved from PayWithMyBank.

<table>

<!-- Field Extraction Method 1: name fields exactly as below,
fields will be populated automatically -->

<tr><td>Transaction ID:</td><td><input type='text' id='transactionID' /></td></tr>
<tr><td>Customer Name:</td><td><input type='text' id='username' /></td></tr>
<tr><td>Bank RTN:</td><td><input type='text' id='bank_routing' /></td></tr>
<tr><td>Bank Account:</td><td><input type='text' id='bank acct' /></td></tr>
<tr><td>Address:</td><td><input type='text' id='address' /></td></tr>

Version 2.0 Page 8 of 25



<tr><td>Address2:</td><td><input type='text' id='address2' /></td></tr>
<tr><td>City:</td><td><input type='text' id='city' /></td></tr>
<tr><td>State:</td><td><input type='text' id='state' /></td></tr>
<tr><td>Zip:</td><td><input type='text' id='zip' /></td></tr>
<tr><td>Phone:</td><td><input type='text' id='phone' /></td></tr>
<tr><td>Email:</td><td><input type='text' id='email' /></td></tr>

</table>

<br><br>

<table>

Figure 4.4: Section of code in “pmwb_merchant.jsp” showing method to auto-populate values retrieved by TCKValidationService.
V. Perform enrollment once transaction ID is obtained

This method is used by Web Application to pull individual fields as needed. First, a JavaScript
function is added to the Web Application.

function Enroll ()
{
var obj = new Object() ;
obj.transactionId = document.getElementById("transactionID") .value;
obj.name = document.getElementById("username") .value;
obj.bank rt = document.getElementById ("bank routing") .value;
obj.bank acct = document.getElementById ("bank acct") .value;
obj.city = document.getElementById("city") .value;
obj.state = document.getElementById("state") .value;
obj.zip = document.getElementById("zip") .value;
obj.phone = document.getElementById('"phone") .value;
obj.email = document.getElementById("email") .value;
obj.addressl = document.getElementById("address") .value;
obj.address2 = document.getElementById("address2") .value;

var data = JSON.stringify (obj) ;
// alert(data) ;

xmlhttp enroll.send(data) ;
}

Figure 4.5: Section of code in “pmwb_merchant.jsp” showing JavaScript method to manually populate values retrieved by
TCKValidationService.

B. Implement sample “pwmb_merchant.jsp” in your Web Application Container and make it accessible
through a URL.

On this example, we will place “pwmb_merchant.jsp” in a Web Application Container in your local PC
as a “PWMBMethod1” Web Application.

Here we are implementing a Controller with @RequestMapping(“/”) that forwards the request to
“pwmb_merchant.jsp”. The Controller can also automatically determine if request is coming from
Cloud Foundry and sets “name” field appropriately.

After deployment in a Web Application Container in your local PC, invoke the application through a
Web Browser.

‘ https://localhost:8443/pwmb/

Version 2.0 Page 9 of 25



PWNMB Test Merchant

[ Enroll using PWMB ]

Pay with my bank validation call response

Transaction ID:
Customer Name:
Bank RTN:
Bank Account:
Address:
Address2:

City:

State:

Zip:

Phone:

Email:

Perform transaction (need enrollment id first)

[ Get enrollment id ]
Enrollment ID:

Enter amount:

[ Perform transactions ]

Figure 4.6: How “pwmb_merchant.jsp” looks like in a web browser.

C. Clicking on the button “Enroll using PWMB” will initiate the call to TckValidationService to validate
the merchant, and establish the connection to PayWithMyBank (the Account Validation Partner).

. Enroll using PWMB | é

Figure 4.7: Button to click to initiate call to TckValidationService.

Version 2.0 Page 10 of 25



This executes the call in this line of “pwmb_merchant.jsp”:

<!-- Pl options: pwmb.getAll, pwmb.getConsumerInfo, pwmb.getBankInfo -->
<button name="pwmb" onclick="javascript:TCKValidationService ('pwmb.getAll')">Enroll using
PWMB</button><br><br>

Figure 4.8: Line of code that the button executes.

This will call TCKValidationController on within sample application.
TCKValidationController will do the following:
* Retrieve the Payeezy “apikey”, “token” and “secret” credentials from “application.properties”,
which are required in order to use the Payeezy API.
* Create an “Establish” JSON string to be used by the Merchant Web Page to establish the
connection to PayWithMyBank.
* Make API call to Payeezy ACH Establish API call
o https://developer.payeezy.com/payeezy-api/apis/post/ach/establish
o This will internally call Telecheck service that will insert preliminary transaction
information to the internal database used by TCKValidationService, to keep track of the
transaction request.

TCKValidationController then sends the “Establish” JSON string back via the Merchant Web Page. This
“Establish” information is sent to the Account Validation Partner (PayWithMyBank in this example) by
the TCKValidationService JavaScript call, and the “Establish” connection is done.

PayWithMyBank then sends back a “Shadow Box”, where the user selects the bank, prompts for a
username/password for PayWithMyBank, and then the account is selected.

Select your bank [x)
—5/ $0.00
TeleCheck | T

Bank of America

Ally Bank
Capital One 360

Citibank

a yWithMyBank”®

Figure 4.9: PayWithMyBank’s “Shadow Box” where the user selects the bank.

For development, PayWithMyBank has setup a sandbox with “Demo Bank” with a sample Checking
and Savings account.

Version 2.0 Page 11 of 25



Select your bank (x)

=4
demo bank

Demo Bank

a

$0.00

PayWithMyBank®

Figure 4.10: User can either scroll down or search for “Demo Bank”.

In this sandbox for “Demo Bank”, there is no username and password setup. The user just needs to

enter something in those fields and click on “Agree & Send”.

4 Sign Into Demo Bank

I;J/
7
7

TeleCheck |

Username

Password

$0.00

AnyUserName

=

Your bank

Agree & Sig

login is never seen or stored by
TeleCheck.

SayWithMyBank®

[ x]

Figure 4.11: A value is entered in the username and password fields, and “Agree & Sign In” is clicked.

Two available demo bank accounts are available for information retrieval, a Checking Account and a
Savings Account. In this example, we will have the user select the Checking Account, and click on

“Continue” to retrieve the account information.

Version 2.0

Page 12 of 25



4 Choose an account [ x]

$0.00

® Demo Checking Account - ****6576
Demo Savings Account - ***6213

5/18/2016, 9:24:55 AM -
TeleCheck Transaction Authorization

Login Name: AnyUserName
Account Name: Demo Checking Account

Account Number: **** 6576
| authorize TeleCheck to debit my selected v
_C 1} e
& VithMyBank®*

Figure 4.12: Demo Checking Account is selected and “Continue” button is clicked.

The transaction information from PayWithMyBank is sent back via URL parameters. On the “onload”
of the Merchant Web Page refresh, this transaction information is sent to the TCKValidationService
Javascript.

TCKValidationService Javascript then makes a call to PayWithMyBank to retrieve the detailed account
information for the transaction.

* This calls Payeezy ACH API Validate:
o https://developer.payeezy.com/payeezy-api/apis/post/ach/validate
o Inthe case of PayWithMyBank, TCKValidationService retrieves the Name, Address, and
Bank Information (depending on the Subscriber settings) using the Transaction ID
retrieved from the Form Object.
o That updates the transaction information in the internal database with the additional
details about the transaction.
* TCKValidationController then builds a JSON string to be used by the Web Application to display
the information.

TCKValidationController sends the JSON string to the Web App, which in turn populates the Form
View Object with the information from the JSON string.

If the Merchant Web Application has the Form Objects named as follows ...

<table>
<!-- Field Extraction Method 1: name fields exactly as below, fields will be populated
automatically -->
<tr><td>Transaction ID:</td><td><input type='text' id='transactionID' /></td></tr>
<tr><td>Customer Name:</td><td><input type='text' id='username' /></td></tr>
<tr><td>Bank RTN:</td><td><input type='text' id='bank_routing' /></td></tr>

Version 2.0 Page 13 of 25



<tr><td>Bank Account:</td><td><input type='text' id='bank acct' /></td></tr>
<tr><td>Address:</td><td><input type='text' id='address' /></td></tr>
<tr><td>Address2:</td><td><input type='text' id='address2' /></td></tr>
<tr><td>City:</td><td><input type='text' id='city' /></td></tr>
<tr><td>State:</td><td><input type='text' id='state' /></td></tr>
<tr><td>Zip:</td><td><input type='text' id='zip' /></td></tr>
<tr><td>Phone:</td><td><input type='text' id='phone' /></td></tr>
<tr><td>Email:</td><td><input type='text' id='email' /></td></tr>

</table>

<br><br>

<table>

Figure 4.13: Section of code showing specific Form Object names to be auto-populated with the transaction information retrieved.

... TCKValidationService will auto-populate the values retrieved from PayWithMyBank.

PWNMB Test Merchant

[ Enroll using PWMB ]

Pay with my bank validation call response

Transaction ID: 1001366632
Customer Name: John Smith

Bank RTN: *EEE%3116
Bank Account: *****§576

Address: 2000 Broadway Street
Address2:

City: Redwood City

State: CA

Zip: 94063

Phone: 2145553434

Email: jsmith@email.com

Figure 4.14: TCKValidationService auto-populates values retrieved from PayWithMyBank.

In the Merchant Web Application, the user clicks the “Get Enrollment ID” button so that PWMB
enrollment ID is obtained using Payeezy ACH Enrollment / PWMB call:

https://developer.payeezy.com/payeezy-api/apis/post/ach/consumer/enrollment/pwmb

Version 2.0 Page 14 of 25



This is done via TCKValidationController’s enroll method.

Get enrollment id

Enrollment ID: 1639635510505175

Figure 4.15: “Get Enrollment ID” button is clicked.

Once that’s done, one can enter amount and click “Perform Transactions”.

Perform transactions

Figure 4.16: “Perform Transactions” button.
This will execute:

https://developer.payeezy.com/payeezy-api/apis/post/transactions-15

This should return successful transaction response:

{"correlation_id":"55.1481653456458","transaction_status":"approved","validation_status":"succe
ss","transaction_type":"purchase","transaction_id":"1400320000000007307304","method":"ach",
"amount":"10","currency":"USD","gateway_resp_code":"07","gateway_message":"3250"}

Figure 4.17: Example transaction response

Version 2.0 Page 15 of 25



2. Major components of sample Spring Boot / JSP web application

* Code Structure:

4 :7_, ach.pwmb.web.client [FIRSTAPI_CONNECT_PAY_WEB master]

4 % src/main/java

L

4 [ com firstdata.ach.pwmb.web.client
- A1} AppController.java

>[4} Application.java

> 41} TCKValidationController.java

. [4} TransactionController.java
- f} comfirstdata.ach.pwmb.web.client.payload
> i comfirstdata.ach.pwmb.web.client.util

4 Gﬁ src/main/resources
4 (=% META-INF
4 (=3 resources
4 (- WEB-INF

4 (3 jsp

[5) pwmb_merchant.jsp
[} transactions.jsp

4 [ static

. [2) TCKValidationInterface.js

(= templates

5 application-cloud.properties
= application.properties

- (f src/test/java

. =\ JRE System Library [JavaSE-1.8]

. =, Maven Dependencies
iy STC
. (= target

|5y manifest.yml

5 mvnw

@] mvnw.cmd

Figure 4.18: Code Structure for Sample Application.

Full Code repository is available at: http://github.com/payeezy

* File Descriptions:

pwmb_merchant.jsp

The Main Web Application Form Page. Includes the references to
PayWithMyBank sandbox JavaScript and Cascading Style Sheet, the
Form Action call to a PWMBServlet that specifically serves the requests
from this Form Page, and the Form Objects to display the values of the
information retrieved from PayWithMyBank.

transactions.jsp

Displays output of transactions call.

TCKValidationinterface.js

JavaScript that fills the Form Objects with the values retrieved from

Version 2.0

Page 16 of 25




3.

PayWithMyBank by TckValidationService and makes API calls to
Payeezy ACH services (establish/validate/enroll).

Application.java Entry point for Spring Boot application. Initializes the application

AppController.java Initial controller that sets server name argument and forwards to
pwmb_merchant.jsp page.

|II

TCKValidationController.java | Provides methods for calling “establish”, “validate” and “enrol

TransactionController.java Execute Payeezy API transaction call.
Payload package Provides sample Java objects for constructing payload for Payeezy APIs.
Util package Provides sample Java objects for Hmac utility validation.

application.properties

n

Contains the “apikey”, “token”, and “secret” credentials to allow use of the Payeezy API calls.

spring.mvc.view.prefix=/WEB-INF/jsp/
spring.mvc.view.suffix=.jsp

# Parameters required to make API calls with Payeezy

# These are associated with particular enrollment subscriber ID and auth subscriber ID
apikey=y6pWAJNyJyjGv66IsVuWnklkKUPFbb0Oa
token=fdoa-a480ce8951daa73262734c£102641994cle55e7cdf4c02b6
apisecret=2b940ece234ee38131le70cc6l7aa2afa3d7££8508856917958e7feb3e£190447
payeezy.url=https://api-cert.payeezy.com/vl/ach

# Needed in case one tries to execute calls internally within FDC network
useProxy=true

proxy.server=fdcproxy.ldc.com

proxy.port=80

Figure 4.19: Contents of “application.properties”.
TCKValidationInterface.js

This JavaScript fills the Form Objects with the values retrieved from PayWithMyBank by
TckValidationService and makes API calls to Payeezy ACH services for “establish”, “validate”, “enrol

I”.
Building and deployment of the application

= To build the application you will need to use “Maven” by Apache. It is a build automation tool

used primarily for Java projects. Once you have Maven, open a command line and simply execute:
> mvn clean install
This will create an executable JAR file, “ach.pwmb.web.client-0.0.1-SNAPSHOT.jar”
= This Spring Boot application can be executed from command line simply by using:
> java -jar ach.pwmb.web.client-0.0.1-SNAPSHOT.jar

It can also be deployed to any compatible J2EE application server (such as Tomcat) and or Cloud
Foundry.

Version 2.0 Page 17 of 25




4. Validation Call Methods for PayWithMyBank.

TckValidationService has three available call methods for PayWithMyBank, which is passed as
Parameter 1 as shown in this code:

PWMB</button><br><br>

<!-- Pl options: pwmb.getAll, pwmb.getConsumerInfo, pwmb.getBankInfo -->
<button name="pwmb" onclick="javascript:TCKValidationService ('pwmb.getAll') ">Enroll using

Figure 4.20: Section of code in “pwmb_merchant.jsp” showing the call to TCKValidationService using the CallType method “pwmb.getAll”.

Call Type Methods

Fields Retrieved

pwmb.getConsumerinfo

transactionlD
username
name

phone

email
address1
address2

city

state

email

pwmb.getBankinfo

transactionlID
bank_routing
bank_acct

pwmb.getAll

All fields from both getConsumerinfo and BankInfo

Version 2.0

Page 18 of 25




Troubleshooting

1. Compatibility with Internet Explorer 8

“TCKValidationInterface.js” uses the FormData object to build payloads, which is not supported by
Internet Explorer 8 (according to Microsoft documentation, this is supported with Internet Explorer 10
or later). This works successfully in Firefox 41.0.1 and Chrome 44.0.2403.155.

If you use it in Internet Explorer 8, you will get an error.

2. Mismatched URL Hash Validation

When using the TCKValidationService in your Web Application, care must be taken so that the same
URL that was passed on the establish call is passed to the validation call to retrieve the data from the
Account Validation Partner.

No extra parameters are to be added in the URL between the establish call and the validation call to
retrieve the data or TCKValidationService will return a Hash Validation Error. TCKValidationService
needs to do this to verify that the same establish call and the validation call are from the same
established request to the Account Validation Partner.

Here is an example of an event that triggered an error in the Hash Validation. The “establish” call is
already done and completed. You successfully login to PayWithMyBank Demo Bank, but then
afterwards you get an error when performing the “Validate” call to retrieve the data.

On the second call (“validate”), the URL being passed in has all the PayWithMyBank parameters
attached. TCKValidationService is expecting the exact same URL that was passed on the establish call.

{"Error":"processRequest:Failed to validate requestSignature from
PWMB:xIAYIxn6awue3tlum8huF88NAEA=","ReturnCode":"1"}

{"Error""processRequest:Failed to validate requestSignature from PWMB: xIAY xnSawue3tium8huF88NAEA=""ReturnCode":"17}

Figure T.2: Error message due to mismatched URL hash value.

If you look at the detail in this error message, you will see that TCKValidationService appends the
parameters to the URL passed in, so there are now duplicates (the highlighted section should not be
passed in as part of the URL string):

Version 2.0 Page 19 of 25



log/server.log:02:07:41,167 ERROR [com.tck.validationservice.PayWithMyBankClient]

processRequest:Hash validation failed: hashStr:

http://local.sd:7001/0PSClientWebSite/LoadWebEnrollment.do?1D=226333
&transactionld=1001269493&transactionType=1&merchantReference=249
&status=2&payment.paymentType=6&payment.paymentProvider.type=1&payment.account.verifi
ed=true&panel=1

&requestSignature= xIAYIxn6awue3tlum8huF88NAEA =
&transactionld=1001269493&transactionType=1&merchantReference=249
&status=2&payment.paymentType=6&payment.paymentProvider.type=1&payment.account.verifi
ed=true&panel=1,

PWMB: xIAYIxn6awue3tlum8huF88NAEA =, calculated:Vyo4dLIx6m4wFkVZp87BBilqEyo=

The solution for this is to make sure the Web Application does not add any extra parameters in
between the “Establish” call and the subsequent “Validate” call to TCKValidationService.

3. Merchant Boarding

Your merchant should be properly boarded onto Payeezy in order for you to be able use the
application.

As shown in application.properties above, you need to obtain API key, token, secret credentials to be
able to execute any API calls.

Version 2.0 Page 20 of 25



Appendix

1. PayWithMyBank Return Status Values

When the call is established and information is retrieved from PayWithMyBank, PayWithMyBank
sends the transaction information back to the requestor via URL parameter, for example:

https://localhost:8443/pwnb/pwmb merchant.jsp?transactionId=100127353
6&transactionType=1l&merchantReference=406&status=2&payment.paymentTyp
e=6&payment .paymentProvider.type=1&payment.account.verified=trueé&pane
l=1&requestSignature=HNLQRDEcxa%2Bpd0JcxHkTe9cp]jSs%3D

Figure A.1: Sample URL parameter contents showing the status code retried from the Establish connection to PayWithMyBank.

One of the parameters is the status of the transaction. In the above example, the status returned is 2,
which according to the table below, represents that the transaction has been “Authorized”.

Below is the table of the Return Status Values from transaction requests to PayWithMyBank (Note:
some of these you might not see due to the transaction type being used by TCKValidationService).

Name Value Description

New 0 This is the initial status after the transaction is created but before the
consumer chooses a financial institution for payment. Transactions in then
New state are visible only through Notification or the API status operations,
not through the Merchant Portal.

Pending 1 Payment is pending. This is the initial transaction status when the consumer
has the Pay Panel open but has not yet authorized the transaction.
Transactions in then Pending state are visible only through Notification or the
API status operations, not through the Merchant Portal.

Authorized | 2 Payment was authorized by the consumer (they have selected their account
and clicked ‘Pay') but the ACH has not yet been submitted for processing.

Processed | 3 Transaction was processed. The ACH debit has been submitted to the ACH
network after authorization by the consumer.

Completed | 4 Transaction was paid, funds transferred.

Failed 5 Internal failure of transaction. (Unrelated to the merchant).

Expired 6 Pending transaction timed out before the consumer authorized the payment
via the Pay Panel.

Canceled 7 Transaction was canceled by the consumer by closing the Pay Panel prior to
the transaction being authorized or canceling the transaction from the Pay
Panel.

Denied 8 Money transfer was denied, consumer account does not have enough funds.

Reversed 10 Payment was reversed (charged back by the bank or PayWithMyBank).

Partially 11 Payment was partially refunded.

Refunded

Refunded | 12 Payment was refunded.

Voided 13 Authorization was voided by the merchant. This occurs when the 'cancel' API

is invoked or the transaction is canceled in the Merchant Portal (this must be

Version 2.0

Page 21 of 25




done prior to the transaction being moved to ‘Processed' status).

OnHold 14

A transaction is put on hold after authorization if something is preventing the
normal flow, such as when a ACH debit could not be initiated, or if the
PayWithMyBank wants the merchant to verify that it really approves of this
customer authorizing this amount. The payment may take longer to process

than usual.

Note: if a transaction is On Hold, you can verify it through the Merchant Portal
to let it resume the normal flow of payment processing. Currently, there is no
equivalent way to do that verification through the API.

2. PayWithMyBank Transaction Test Passwords

PayWithMyBank provides a list of Passwords for “Demo Bank” to use in their Shadow Box to test
different transaction error.

For example, if you enter “LoginError” as the password, as shown in this example:

demo bank

Demo Bank

"))

Selec your bank X

$0.00

PayWithMyBank®

Sign into Demo Bank (x ]

= s0.00

Username

AnyUsername

Password

A SIgn In you agree to
.Enter."LoginError"
here, without quotes.

‘i’ ae & i"

Figure A.2: Example for entering a specific password to test different return cases from PayWithMyBank.

After you click “Agree & Sign In”, the PayWithMyBank Shadow Box will return with a message
regarding a Login Error or Wrong Username or Password:

Sign into Demo Bank

=4

Qog In error. Please try again)

Username

Version 2.0

Page 22 of 25




Figure A.3: Example test error message for a specific password to test different return cases from PayWithMyBank.

Below is the table of Password phrases to use for testing with “Demo Bank”, and what the expected
returned message will be (Note: this list is provided by PayWithMyBank, and messages may differ as
this is a Demo Bank provided by PayWithMyBank).

Phrase Notes

NoEligibleAccounts No eligible accounts found

LoginError Wrong username or password

NotRecognized Main Error that users see when using an ACA

NoSuchField This error ultimately ends up as a PageNotRec error. It happens
when an item cannot be found on the page. ACA will try to
execute another page. If there is no another page, “page not
recognized” error will be returned. Customers shouldn’t see this
error.

PostError HTTP connection error using GET. Customer shouldn’t see this
error. In real ACA, this will result in a Site not available” error.

GetError HTTP connection error using POST. Customer shouldn’t see this
error. In real ACA, this will result in a Site not available” error.

PromptTypeError When an ACA fails to create a prompt, this error is returned. If
this error appears, it means the ACA has a bug.

JsError When ACA tries to run javascript code and there are any errors
during running, this error will be thrown.

Unavailable Bank Site cannot be reached.

AccountLocked User’s account is locked.

Others There are some run time exceptions that not captured by ACA,
like NPE(null pointer exception), array out of bounds exception
and so on. This probably means that it needs more work.

BankAction The bank requires the user to login and perform some action on
their site.

ConnectError There was a connection problem when accessing bank site

BlockedIpError

The bank indicates the caller IP was blocked

ValidRouteCodeExtra

Connector returns 2 accounts whose route codes are larger than
9 digits: one of them has a valid route code as substring, so both
accounts use the same valid code

InvalidRouteCodeExtra

Connector returns a single account whose route code is larger
than 9 digits, but no valid route code is found as substring.
Hence, the account is ignored

TimeoutError

In order to simulate a timeout, connector sleeps for at least a
minute before actually doing anything.

TestPrompts To test different bank inputs. This is to test the prompts on next
page, including (Checkbox, radio, text, password, date,
description and so on)

NotEnoughFunds Connector returns a single account with zero balance. This is
similar to having no eligible accounts, but with different reason.

NotEnoughFundsExtra Connector returns two accounts. One with zero balance, the

other with a valid balance.

Version 2.0

Page 23 of 25




InvalidAccountNumberSize

Connector returns a single account, but with account number
shorter than the required. This is to test how the screen filters
invalid accounts

InvalidAccountNumberSizeExtra

Connector returns two accounts. One with account number
shorter (3 characters) than the required, the other with valid
account number.

PartialAccountNumbers

Connector returns two accounts, however only with partial
numbers. Simulating when for example the account is new and
we still don't have statements to get full account number.

OnlyPartials PartialAccountNumbers + NoRouteCode
NoCustomer Simulates as if FIC was not able to retrieve customer information
NoRouteCode Regular flow with 2 accounts, but none with route code. This

prompts a question for account location, where user must select
where the account was open (from the given options)

InvalidRouteCode

Regular flow but simulates an invalid routing code (will simulate
if ProfitStars returns invalid routing code)

2FA

Simulates as the bank requested a challenge question to the
user.

The question should be answered with the word 'error' if it's
necessary to simulate a wrong credential. Otherwise, it should
be anything to have a successful access.

WrongCredentials

Simulates retry scenario, where the user provide wrong
challenge (or anything that isn't userid or password) and is
allowed to retry

SiteRequestError

Simulates as if the bank couldn't process a particular request,
allowing user to retry it

SessionTimeout

Simulates as if the user took too long to provide the requested
information, since the bank session is already expired

StressTest

Simulates FIC's file download (ask for an URL) and CPU
consumption (asks for time in milliseconds)

AccountsWithNameAndAddress

Simulates an User with 2 accounts and each one with different
names and addresses.

Manylnformation

Simulates an User with 10 accounts.

AccountNotSupported Simulates an User with an account not supported by our service
(Chase Liquid, etc)
AmountNull Simulates the Demo Checking Account returning an amount with

null value.

Version 2.0

Page 24 of 25




Revision History

Version Date Revision
V2.0 March 2017 * Re-wrote major parts to make this compatible with sample Spring
Boot application and services that Payeezy exposes.
V1.01 June 29, 2016 * Added PWMB Method 3 — Same as Method 2 with the addition of
Application.properties.
* Specified which versions of Java Versions / Containers were used
for the test code for the PWMB examples.
* Additional clarification for Troubleshooting # 3 about the need for
the Subscriber ID to be correctly setup with the PWMB AddOns.
* Added section for document revision history.
V1.0 June 7, 2016 ¢ Initial Version.

Version 2.0

Page 25 of 25




